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Abstract: Kauffman networks are a class of Boolean networks where each node has the same number of incoming connections.
Despite the simplicity of such networks, they exhibit very complex behaviors and have been shown to be an appropriate model
for certain gene regulatory networks. Kauffman networks are typically represented by Boolean logics for which no efficient
analytical tools are available. The logical representation of Kauffman networks makes it extremely difficult to analyze their
dynamic behaviors. Based on a recently developed tool named “semi-tensor product” for matrices, we propose a novel matrix
representation for Kauffman networks. This matrix representation is essentially a linear discrete dynamic system, making it
possible to analyze the dynamic behaviors of Kauffman networks using existing tools in dynamic systems. As an example of the
advantages of using this matrix representation, we show how the number and length of attractors can be calculated efficiently
which is an impossible task for the original logical representation. Some general properties of Kauffman networks are also
discussed based on their matrix representation.
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1 Introduction

Kauffman networks, also referred to as N-K networks or
random Boolean networks, were first introduced by Kauff-
man in 1969 [1] as a simplified model for gene regulatory
networks. Since its first introduction, persistent efforts have
been devoted to it; see recent works in [2–6] and the refer-
ences therein. Although the main interests in this model are
due to gene regulatory networks, the understanding of other
complex networks such as the small world network also ben-
efits from this simple yet meaningful model [7].

Kauffman networks are constructed by randomly choos-
ing the Boolean logics and the same number of incoming
connections for each node. One is usually interested in the
mean properties of the ensemble of all the possible Kauff-
man networks with certain system size n and incoming con-
nections k. This ensemble-based analysis can offer us the
knowledge of how the system structure, i.e., the system size
n and the incoming connections k, would affect the net-
work properties of interest in the mean sense, for example,
the mean number and length of attractors [8–10]. However,
Kauffman networks are typically represented by a number
of interacted logical functions for which no analytical tools
are available. To make it worse, the possible states of Kauff-
man networks are increasing with the power of 2n with the
system size n and the ensemble of Kauffman networks is in-
creasing even faster, making it impossible to analyze such
networks using simulation-based approaches even for as few
as dozens of nodes. Therefore, novel approaches to dealing
with Kauffman networks have been sought for decades.

To deal with this difficulty, we propose a novel matrix rep-
resentation for Kauffman networks. This is obtained fol-
lowing recent works on the matrix representation of gen-
eral Boolean networks based on a novel tool called “semi-
tensor product” [11, 12], a generalized product of matrices.
Using semi-tensor product, Boolean networks can be repre-
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sented by a linear discrete dynamic system. This allows us
to analyze the dynamic behaviors of Boolean networks using
tools in discrete dynamic system theory. We consider spe-
cific restrictions of Kauffman networks compared to general
Boolean networks and reflect these restrictions in the matrix
representation of Kauffman networks. We also discuss some
further properties of Kauffman networks based on their ma-
trix representation and as an example of the advantages of
the matrix representation we show how to calculate the num-
ber and length of attractors of a specific Kauffman network
based on its matrix representation.

The remainder of the paper is organized as follows. For
completeness we first introduce the matrix representation
of general Boolean networks in Section 2. We then apply
the general matrix representation to Kauffman networks in
Section 3. This involves both determining whether a given
matrix representation of a Boolean network is a Kauffman
network or not and generating the matrix representation of
Kauffman networks from their logical representation. More
properties and the efficient way to calculate the number
and length of attractors of Kauffman networks are discussed
based on the matrix representation in Section 4 and Section
5 concludes the paper.
2 The matrix representation of general Boolean

networks
We first give the definition of semi-tensor product for

completeness.

Definition 1 (Semi-tensor product, [11]) For any matrices
X and Y with dimensions r1 × c1 and r2 × c2, the semi-
tensor product of X and Y , denoted by X !Y , is defined as
follows,

X ! Y := (X ⊗ Ilcm(c1,r2)/c1)(Y ⊗ Ilcm(c1,r2)/r2) (1)

where lcm(c1, r2) is the least common multiple of c1 and r2
and ⊗ represents the Kronecker product.

It is noticed that semi-tensor product is a generalization
of normal product of matrices and therefore in what follows
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we might omit the symbol ! wherever no confusion can be
caused.

Let D := {1, 0}, where 1 ∼ T and 0 ∼ F represent
“True” and “False”, respectively. We can use vectors to rep-
resent the logical values in D, as follows,

T ∼ 1 ∼ δ12 , F ∼ 0 ∼ δ22 (2)

where δkn denotes the kth column of the identity matrix with
dimension n, In. Let

∆n := {δkn|1 ≤ k ≤ n} (3)

For simplicity of notations, let ∆2 := ∆ and then ∆ ∼ D.
An n×m matrix M is called a logical matrix if

M = [δi1n δi2n . . . δimn ] (4)

which can be denoted simply by

M = δn[i1 i2 . . . im] (5)

where 1 ≤ ip ≤ n, p = 1, 2, . . . ,m.
Denote the set of all n×m logical matrices by Ln×m.
We have the following fundamental result based on semi-

tensor product [12].

Theorem 1 ([12]) Let f(x1, x2, . . . , xn) be a logical func-
tion. There exists a unique M ∈ L2×2n , called the structure
matrix of f , such that

f(x1, x2, . . . , xn) = M !n
i=1 xi (6)

Now consider a Boolean network with n nodes, as fol-
lows,

⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = f1(x1(t), . . . , xn(t))
...
xn(t+ 1) = fn(x1(t), . . . , xn(t))

(7)

According to Theorem 1, the Boolean network in (7) can
be equivalently represented in its component-wise matrix
representation, as follows,

⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = L1x(t)
...
xn(t+ 1) = Lnx(t)

(8)

Let x(t) := !n
i=1xi(t). The above component-wise ma-

trix representation can be further rewritten in a compact
form, as follows,

x(t+ 1) = Lx(t) (9)

with

L = L1 ∗ L2 ∗ . . . ∗ Ln (10)

where ∗ is the Khatri-Rao product. That is,

Coli(L) = !n
j=1 Coli(Lj), i = 1, . . . , 2n (11)

Remark 1 The logical functions we considered here are
in the functionally equivalent sense. That is, two logical
functions are the same if and only if they are functionally
equivalent. For example, although the two logical functions,
f(x1, x2) = x1 and g(x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ ¬x2)
where ∧, ∨ and ¬ represent conjunction, disjunction and
negation, respectively, are different in their expressions, they
are the same in terms of their functionalities as the same in-
put can guarantee the same output. They are regarded as
one function. In this sense, the mapping of the logical func-
tions from their logical representation to their matrix repre-
sentation is bijective and thus we are free to use the matrix
representation in all cases.

3 The matrix representation of Kauffman net-
works

We give a formal definition of classic Kauffman networks,
as follows.

Definition 2 (Classic Kauffman networks) A classic
Kauffman network, NK(n, k), is a Boolean network with
n nodes in which each node receives a fixed number of k
incoming connections.

In classic Kauffman networks the requirement of the same
number of incoming connections for each node is a tight re-
striction. We may want to consider a generalized version by
relaxing this restriction, as follows.

Definition 3 (Generalized Kauffman networks) A gener-
alized Kauffman network, GNK(n, k), is a Boolean net-
work with n nodes in which each node receives no more than
k incoming connections.

In both the above definitions, the incoming connections
and corresponding logical functions are chosen randomly for
each node when the network is constructed but they remain
fixed during the dynamics of the network. As all the results
that follows for classic Kauffman networks can be readily
extended to generalized Kauffman networks, we may thus
either omit the results for generalized Kauffman networks or
simply present the results without proof for brevity.

3.1 Determining whether a Boolean network in its ma-
trix representation is a Kauffman network

Definition 4 Given a logical function f . A node is said to
be free to f if the output of f is entirely independent of the
state of this node. The number of nodes that are free to f is
denoted by κ(f).

Based on Definition 4, we are able to give an alternative
definition for Kauffman networks (classic and generalized).

Proposition 1 (Alternative definition of Kauffman networks)
A Boolean network with size n is a classic Kauffman net-
work, NK(n, k), if and only if

κ(fj) = n− k, ∀1 ≤ j ≤ n (12)

It is a generalized Kauffman network, GNK(n, k), if and
only if

κ(fj) ≥ n− k, ∀1 ≤ j ≤ n (13)

Proof. Straightforward by definitions.
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Construct Sn
i ∈ L2×2n by 2i blocks with equal size of

2 × 2n−i and the odd and even blocks being δ2[1, 1, . . . , 1]
and δ2[2, 2, . . . , 2], respectively, and define

Pn
i := {j|Colj(Sn

i ) = δ12}, P̄n
i := {j|Colj(Sn

i ) = δ22}
(14)

Note that we also keep the ascending order of the ele-
ments in Pn

i and P̄n
i . For example, P 3

1 = {1, 2, 3, 4},
P̄ 3
1 = {5, 6, 7, 8}.
We have the following criterion to determine whether a

node is free to a logical function.

Proposition 2 Given the structure matrix M of a logical
function f on x. Node xi is free to f if and only if

Mi = M̄i (15)

where

Mi = M ! δ2i [P
i
i ], M̄i = M ! δ2i [P̄

i
i ] (16)

where δ2i [P i
i ] and δ2i [P̄

i
i ] are the logical matrices with their

jth columns being δ
P i

i (j)
2i and δ

P̄ i
i (j)

2i , respectively.

Proof. xi is free to f if and only if the following two ma-
trices are identical: one is constructed by the columns of
M belonging to Pn

i and the other by the columns of M be-
longing to P̄n

i . These two matrices are exactly those defined
above by the definition of semi-tensor product.

The following theorem offers a way to determine whether
a Boolean network given its component-wise matrix repre-
sentation is a classic Kauffman network. Note the similar
criteria applies to generalized Kauffman networks as well.
We omit the discussions for brevity.

Theorem 2 A Boolean network with size n is a classic
Kauffman network, NK(n, k), if and only if for each of its
logical functions fj , there exist and only exist k indexes,
1 ≤ i1, i2, . . . , ik ≤ n, such that

(Lj)il = (L̄j)il , l = 1, 2, . . . , k (17)

where

(Lj)il = Lj ! δ2il [P
il
il
], (L̄j)il = Lj ! δ2il [P̄

il
il
] (18)

Proof. Straightforward by Propositions 1 and 2.
As the component-wise matrix representation in (8) of a

Boolean network can be readily obtained from its compact
matrix representation in (9), Proposition 2 and Theorem 2
thus apply to Boolean networks in the compact matrix rep-
resentation as well.

Corollary 1 Given a Boolean network in (9). Node xi is
free to function fj if and only if either of the following two
cases is true

1.L(Pn
i ) ⊆ Pn

j ,L(P̄n
i ) ⊆ P̄n

j ; (19)

2.L(Pn
i ) ⊆ P̄n

j ,L(P̄n
i ) ⊆ Pn

j (20)

where L(Pn
i ) and L(P̄n

i ) denote the values in L in the
columns belonging to Pn

i and P̄n
i , respectively.

Proof. Notice that such columns in Lj with the values
being 1 (or 2) will make the values in L belong to Pn

j (or
P̄n
j ). The result is thus straightforward by Proposition 2.
The criterion of determining whether a given Boolean net-

work is a Kauffman network in the compact matrix represen-
tation is given as follows.

Theorem 3 Given a Boolean network in (9). It is a classic
Kauffman network, NK(n, k), if and only if

arg{i|either (19) or (20) is true} = k, ∀1 ≤ j ≤ n (21)

Proof. Straightforward from Theorem 2 and Proposition 1.

Example 1 Suppose we have only the following component-
wise matrix representation of a Boolean network,

⎧
⎪⎨

⎪⎩

x1(t+ 1) = δ2[1 1 2 2 1 1 2 2]x(t)

x2(t+ 1) = δ2[1 1 1 1 2 2 2 2]x(t)

x3(t+ 1) = δ2[2 2 1 1 2 2 1 1]x(t)

It is easy to check that (L1)1 = (L̄1)1, (L1)3 = (L̄1)3 and
(L1)2 ̸= (L̄1)2. Therefore κ(f1) = 2. Similarly we have
κ(f2) = κ(f3) = 2 and therefore it is a classic Kauffman
network with NK(3, 1) by Theorem 2.

If we know only the compact matrix representation

x(t+ 1) = δ8[2 2 5 5 4 4 7 7]x(t)

we can check that there exist and only exist the following
inclusion relationships,

L(P 3
2 ) ⊆ P 3

1 ,L(P 3
1 ) ⊆ P 3

2 ,L(P 3
2 ) ⊆ P 3

3

It is thus a classic Kauffman network with NK(3, 1) by
Theorem 3.

3.2 Kauffman networks: From logical representation
to matrix representation

The logical representation of classic Kauffman networks,
NK(n, k) can be written as follows,

⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = f1(xi11(t), . . . , xi1k(t))
...
xn(t+ 1) = fn(xin1(t), . . . , xink(t))

(22)

where ij1, ij2, . . . , ijk are the indexes of the nodes that func-
tion fj depends on. Without loss of generality we assume
these indexes are in the ascending order. For simplicity of
notations we let [i]n,kj := {ij1, ij2, . . . , ijk} denote the se-
quence in the ascending order constructed by choosing k el-
ements from {1, 2, . . . , n}. As n, k have been reserved to
denote the two parameters in Kauffman networks, in what
follows we may simply use [i]j (or even [i] when function fj
is not explicitly focused on) wherever no confusion can be
caused.

Let x[i]j := !k
l=1xijl and denote by L[i]j the structure

matrix for fj on x[i]j . The component-wise matrix represen-
tation of (22) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = L[i]1x[i]1(t)
...
xn(t+ 1) = L[i]nx[i]n(t)

(23)
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Theorem 4 shows how we can construct the structure ma-
trix for fj on x, denoted by Lj , from the available structure
matrix on x[i]j , L[i]j .

Theorem 4 Suppose the structure matrix of a logical func-
tion f , Mk, depends on a subset of k nodes out of the n
nodes, Vk

s := x[i] = {xi1 , . . . , xik}. Its structure matrix de-
pendent on all the nodes V := {x1, . . . , xn}, denoted by M ,
can be obtained as follows.

M = MkT[i] (24)

where

T[i] :=!n−k
l=1 Tik+l (25)

Tik+l =δ2ik+l−1 [1 1 2 2 . . . 2ik+l−1 2ik+l−1], xik+l ∈ Vn−k
m

(26)

where Vn−k
m := V\Vk

s = {xik+1 , . . . , xin} is the set of all
the missing nodes in f in the ascending order.

Proof. M can be constructed by inserting the missing nodes
from Vn−k

m one by one into Mk.
Suppose the first l − 1 nodes in Vn−k

m have been inserted
into Mk and the new structure matrix dependent on these
k+ l−1 nodes is denoted by Mk+l−1. The sets of the miss-
ing and the already selected nodes are now Vn−k−l+1

m =
{xik+l , . . . , xin} and Vk+l−1

s = {xi1 , . . . , xik+l−1}, respec-
tively. Now consider the lth node in Vn−k

m , ik+l, which is
also the first in Vn−k−l+1

m , and the ik+lth in the selected
nodes set Vk+l

s = {xi1 , . . . , xik+l}. As all the nodes with
index less than ik+l have already been inserted, Mk+l can
thus be constructed as follows.

1) Split Mk+l−1 as blocks with size 2k+l−ik+l .
2) For all these 2ik+l−1 blocks in Mk+l−1, copy each of

such blocks right behind it.
It is readily seen from Proposition 2 that Mk+l depends

only on Vk+l
s . The above procedure corresponds to

Mk+l = Mk+l−1 ! Tik+l

Noticing that M = Mn and the above procedure can be
done repeatedly, (24) readily follows.

Denote V [i]j
m the set of missing variables in function fj ,

and T[i]j := !
il∈V

[i]j
m

Til . Then

⎧
⎪⎪⎨

⎪⎪⎩

x1(t+ 1) = L[i]1T[i]1x(t)
...
xn(t+ 1) = L[i]nT[i]nx(t)

(27)

and

x(t+ 1) = Lx(t) (28)

where

L = L[i]1T[i]1 ∗ L[i]2T[i]2 ∗ . . . ∗ L[i]nT[i]n (29)

Remark 2 For generalized Kauffman networks, L[i]j can be
arbitrary. However for classic Kauffman networks, L[i]j
may not be arbitrary due to the requirement that for each
node there exists exactly k incoming connections. L[i]j must
establish itself to be dependent on all the k chosen nodes.

Corollary 2 T[i] is uniquely defined by n and [i], and

T[i] ∈ L2in−n+k×2in (30)

Furthermore, in classic Kauffman networks there are(
n
k

)
possible choices of T[i] with equal probability.

Proof. Straightforward.
If T[i] is known, the structure matrix M can be obtained

as follows.

Proposition 3 Suppose

T[i] = δ2in−n+k [j1 j2 . . . j2in ] (31)

Then

M = [Mkδj12in−n+k . . . . . . Mkδ
j2in
2in−n+k ] (32)

with

Mkδjl2in−n+k = [Mk((jl − 1)2n−in + 1) . . . Mk(jl2
n−in)]

Proof. Notice that n− k ≤ in ≤ n, thus

0 ≤ in − n+ k ≤ k

Notice also Mk ∈ L2×2k and T[i] ∈ L2in−n+k×2in , and
therefore

MkT[i] = Mk(T[i] ⊗ I2n−in )

The result readily follows from definitions.

Remark 3 From (27) it is readily seen that the two factors
affecting the dynamics of Kauffman networks are clearly
identified. T[i]j represents the random choice of k incom-
ing connections, with each choice having the same probabil-

ity of
(

n
k

)
. L[i]j represents the logical function on these

selected k incoming connections, with each possible option
having the same probability of 22

k

.

Example 2 Consider Example 1 again. Its logical represen-
tation is

⎧
⎪⎨

⎪⎩

x1(t+ 1) = x2(t)

x2(t+ 1) = x1(t)

x3(t+ 1) = ¬x2(t)

Its component-wise matrix representation on k nodes can
be obtained as follows,

⎧
⎪⎨

⎪⎩

x1(t+ 1) = δ2[1 2]x2(t)

x2(t+ 1) = δ2[1 2]x1(t)

x3(t+ 1) = δ2[2 1]x2(t)

Using Theorem 4, we are able to obtain the component-
wise matrix representation on all the nodes, as follows,

⎧
⎪⎨

⎪⎩

x1(t+ 1) = δ2[1 1 2 2 1 1 2 2]x(t)

x2(t+ 1) = δ2[1 1 1 1 2 2 2 2]x(t)

x3(t+ 1) = δ2[2 2 1 1 2 2 1 1]x(t)

Furthermore, the compact matrix representation is

x(t+ 1) = δ8[2 2 5 5 4 4 7 7]x(t)
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4 Properties of Kauffman networks and its appli-
cation to attractor analysis

In this Section we discuss the properties of the matrix rep-
resentation of Kauffman networks and as an example of the
advantages of using this matrix representation we show how
efficiently the number and length of attractors of Kauffman
networks can be calculated.

4.1 Properties of Kauffman networks
We organize the properties of classic Kauffman networks

in the following theorem. Similar results can be found for
generalized Kauffman networks but are omitted for brevity.

Theorem 5 Suppose fj is one of the logical functions in a
classic Kauffman network, NK(n, k). Its structure matrix
on all the nodes is denoted by Lj which actually depends
only on k nodes with indexes [i]j = {ij1, . . . , ijk}. Then

1) The number of free columns in Lj is 2k.
2) Define

Qn,k
j := {∩k

l=1(P
n
ijl)

±|(Pn
ijl)

± = Pn
ijl or P̄n

ijl} (33)

Then

Card(Qn,k
j ) = 2k (34)

∪Qji∈Qn,k
j

Qji = {1, . . . , 2n} (35)

Card(Qji) = 2n−k, ∀Qji ∈ Qn,k
j (36)

Qj1 ∪Qj2 = ∅, ∀Qj1, Qj2 ∈ Qn,k
j (37)

Lj(Qji) = δ2[1 . . . 1] or δ2[2 . . . 2] ∀Qji ∈ Qn,k
j

(38)

L(Qji) ⊆ Pn
j or P̄n

j , 1 ≤ i ≤ 2k (39)

where Card represents the cardinality of a set and
Lj(Qji) and L(Qji) are the values in Lj and L in the
columns belonging to Qji, respectively.

3) If the number of nodes that serve as inputs (denoted by
nd) is less than n, then in L the columns can be divided
into 2nd blocks with the size of each block being 2n−nd .
In each of the blocks, the values are the same.

Proof. From Theorem 4 it is seen that Lj is generated by
repeating different sizes of blocks from L[i]j and thus Lj and
L[i]j have the same number of free columns, i.e., 2k. This
proves the first part of the Theorem.

Since Qn,k
j contains the intersections of k sets and each

set has two options, and it is easy to check that any such two
intersections are different, (34) is thus true. The correctness
of the results in (35) through (39) can be checked similarly
by definitions and noticing Proposition 1 and we omit the
details of proof.

The third part of the Theorem is true by using(39).

Example 3 Consider a Kauffman network, NK(5, 2), as
follows,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t+ 1) = δ2[1 2 1 1]x2(t)x3(t)

x2(t+ 1) = δ2[1 2 2 2]x1(t)x4(t)

x3(t+ 1) = δ2[2 1 1 2]x2(t)x5(t)

x4(t+ 1) = δ2[1 2 1 1]x1(t)x2(t)

x5(t+ 1) = δ2[1 2 1 1]x1(t)x3(t)

Its component-wise matrix representation on all the nodes
is obtained as (by Theorem 4)
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t+ 1) = δ2[11112222111111111111222211111111]x(t)

x2(t+ 1) = δ2[11221122112211222222222222222222]x(t)

x3(t+ 1) = δ2[21212121121212122121212112121212]x(t)

x4(t+ 1) = δ2[11111111222222221111111111111111]x(t)

x5(t+ 1) = δ2[11112222111122221111111111111111]x(t)

Then we are able to obtain its compact matrix representa-
tion, as follows,

x(t+ 1) = δ32[5 1 13 9 22 18 30 26 3 7 11 15 4 8 12 16

13 9 13 9 29 25 29 25 9 13 9 13 9 13 9 13 ]x(t)
(40)

In what follows we show (39) in Theorem 5 is correct (for
j = 1). The correctness of other parts of the Theorem can
be checked similarly.

By definition we obtain

Q5,2
1 = {Q11 = P 5

2 ∩ P 5
3 = {1, 2, 3, 4, 17, 18, 19, 20},

Q12 = P 5
2 ∩ P̄ 5

3 = {5, 6, 7, 8, 21, 22, 23, 24},
Q13 = P̄ 5

2 ∩ P 5
3 = {9, 10, 11, 12, 25, 26, 27, 28},

Q14 = P̄ 5
2 ∩ P̄ 5

3 = {13, 14, 15, 16, 29, 30, 31, 32}}

Then (39) is true since

L(Q11) = {5, 1, 13, 9, 13, 9, 13, 9} ⊆ P 5
1 = {1, 2, . . . , 16}

L(Q12) = {22, 18, 30, 26, 29, 25, 29, 25} ⊆ P̄ 5
1 = {17, . . . , 32}

L(Q13) = {3, 7, 11, 15, 9, 13, 9, 13} ⊆ P 5
1 = {1, 2, . . . , 16}

L(Q14) = {4, 8, 12, 16, 9, 13, 9, 13} ⊆ P 5
1 = {1, 2, . . . , 16}

4.2 Calculating the attractors for Kauffman networks
using its matrix representation

The number and length of attractors is one of the most
important properties in a Boolean network. It is extremely
difficult, if not impossible, to obtain this information in the
logical representation. However, the matrix representation
offers us a complete solution to this problem [11].

Theorem 6 ([11]) Given a Boolean network in the compact
matrix representation with the structure matrix being L. The
number of attractors of length s, denoted by Ns, is induc-
tively determined by

N1 = trace(L) (41)

Ns =
trace(Ls)−

∑
k∈P(s) kNk

s
, 2 ≤ s ≤ 2n (42)

where P(s) is the set of proper factors of s.
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Example 4 We show how Theorem 6 can be used for Kauff-
man networks in Example 3. In fact, if the compact ma-
trix representation of the considered Kauffman network is
known, then the calculation of the number of attractors of
different lengths is a sdandard procedure.

Based on L in (40) and applying Theorem 6, it is easy to
obtain

N1 = 2, N2 = 1, N3 = 0, N4 = 1, Ni = 0, i ≥ 5

This result can never be readily obtained based on the
conventional logical representation.

5 Conclusions
Kauffman networks are one of the most important models

in Boolean networks which is useful as a simplified model
for various complex systems. In order to deal with the dif-
ficulty of the lack of analytical tools in the conventional
logical representation of Kauffman networks, we propose a
matrix representation motivated by recent works on the ma-
trix representation of general Boolean networks based on the
novel tool called semi-tensor product. This matrix represen-
tation of Kauffman networks is essentially a linear discrete
dynamic system for which extensive tools are available. It is
believed that this novel matrix representation will open up a
new direction of dealing with Kauffman networks and fruit-
ful results are expected in the near future.
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